Application of single step genomic BLUP under different uncertain paternity scenarios using simulated data
نویسندگان
چکیده
The objective of this study was to investigate the application of BLUP and single step genomic BLUP (ssGBLUP) models in different scenarios of paternity uncertainty with different strategies of scaling the G matrix to match the A22 matrix, using simulated data for beef cattle. Genotypes, pedigree, and phenotypes for age at first calving (AFC) and weight at 550 days (W550) were simulated using heritabilities based on real data (0.12 for AFC and 0.34 for W550). Paternity uncertainty scenarios using 0, 25, 50, 75, and 100% of multiple sires (MS) were studied. The simulated genome had a total length of 2,333 cM, containing 735,293 biallelic markers and 7,000 QTLs randomly distributed over the 29 BTA. It was assumed that QTLs explained 100% of the genetic variance. For QTL, the amount of alleles per loci randomly ranged from two to four. The BLUP model that considers phenotypic and pedigree data, and the ssGBLUP model that combines phenotypic, pedigree and genomic information were used for genetic evaluations. Four ways of scaling the mean of the genomic matrix (G) to match to the mean of the pedigree relationship matrix among genotyped animals (A22) were tested. Accuracy, bias, and inflation were investigated for five groups of animals: ALL = all animals; BULL = only bulls; GEN = genotyped animals; FEM = females; and YOUNG = young males. With the BLUP model, the accuracies of genetic evaluations decreased for both traits as the proportion of unknown sires in the population increased. The EBV accuracy reduction was higher for GEN and YOUNG groups. By analyzing the scenarios for YOUNG (from 0 to 100% of MS), the decrease was 87.8 and 86% for AFC and W550, respectively. When applying the ssGBLUP model, the accuracies of genetic evaluation also decreased as the MS in the pedigree for both traits increased. However, the accuracy reduction was less than those observed for BLUP model. Using the same comparison (scenario 0 to 100% of MS), the accuracies reductions were 38 and 44.6% for AFC and W550, respectively. There were no differences between the strategies for scaling the G matrix for ALL, BULL, and FEM groups under the different scenarios with missing pedigree. These results pointed out that the uninformative part of the A22 matrix and genotyped animals with paternity uncertainty did not influence the scaling of G matrix. On the basis of the results, it is important to have a G matrix in the same scale of the A22 matrix, especially for the evaluation of young animals in situations with missing pedigree information. In these situations, the ssGBLUP model is an appropriate alternative to obtain a more reliable and less biased estimate of breeding values, especially for young animals with few or no phenotypic records. For accurate and unbiased genomic predictions with ssGBLUP, it is necessary to assure that the G matrix is compatible with the A22 matrix, even in situations with paternity uncertainty.
منابع مشابه
Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملA Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions
The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...
متن کاملApplication of single-step genomic evaluation for crossbred performance in pig.
Crossbreding is predominant and intensively used in commercial meat production systems, especially in poultry and swine. Genomic evaluation has been successfully applied for breeding within purebreds but also offers opportunities of selecting purebreds for crossbred performance by combining information from purebreds with information from crossbreds. However, it generally requires that all rele...
متن کاملPrediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models.
Different methods for genomic evaluation were compared for accuracy and feasibility of evaluation using phenotypic, pedigree, and genomic information for a trait influenced by a maternal effect. A simulated population was constructed that included 15,800 animals in 5 generations. Genotypes from 45,000 SNP were available for 1,500 animals in the last 3 generations. Genotyped animals in the last ...
متن کاملFactors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study.
We compared the accuracies of four genomic-selection prediction methods as affected by marker density, level of linkage disequilibrium (LD), quantitative trait locus (QTL) number, sample size, and level of replication in populations generated from multiple inbred lines. Marker data on 42 two-row spring barley inbred lines were used to simulate high and low LD populations from multiple inbred li...
متن کامل